Catalyzing role of erythropoietin on the nitric oxide central pathway during the ventilatory responses to hypoxia

نویسندگان

  • Nicolas Voituron
  • Florine Jeton
  • Yannick Cholley
  • Raja El Hasnaoui‐Saadani
  • Dominique Marchant
  • Patricia Quidu
  • Fabrice Favret
  • Jean‐Paul Richalet
  • Aurélien Pichon
چکیده

The N-Methyl-d-Aspartate (NMDA) receptors - neuronal nitric oxide synthase (nNOS) pathway is involved in the ventilatory response to hypoxia. The objective was to assess the possible effect of erythropoietin deficiency and chronic exposure to hypoxia on this pathway during ventilatory response to acute hypoxia. Wild-type (WT) and erythropoietin-deficient (Epo-TAg(h)) male mice were exposed (14 days) either to hypobaric hypoxia (Pb = 435 mmHg) or to normoxia. The ventilation was measured at 21% or 8% O2 after injection of vehicle (NaCl), nNOS inhibitor (SMTC) or NMDA receptor antagonist (MK-801). Nitric oxide production and the expression of NMDA receptor and nNOS were assessed by real-time RT-PCR and Western blot analyses in the medulla. At rest, Epo-TAg(h) mice displayed normal ventilatory parameters at 21% O2 but did not respond to acute hypoxia despite a larger expression of NMDA receptors and nNOS in the medulla. Ventilatory acclimatization to hypoxia was observed in WT but was absent in Epo-TAg(h) mice. nNOS inhibition blunted the hypoxic ventilatory acclimatization of WT mice without any effect in Epo-TAg(h) mice. Acute hypoxic ventilatory response (HVR) was increased after chronic hypoxia in WT but remained unchanged in Epo-TAg(h) mice. Ventilatory response to acute hypoxia was modified by MK-801 injection in WT and Epo-TAg(h) mice. The results confirm that adequate erythropoietin level is necessary to obtain an appropriate HVR and a significant ventilatory acclimatization to hypoxia. Furthermore, erythropoietin plays a potential catalyzing role in the NMDA-NO central pathway during the ventilatory response and acclimatization to hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of nitric oxide-containing factors in the ventilatory and cardiovascular responses elicited by hypoxic challenge in isoflurane-anesthetized rats.

Exposure to hypoxia elicits changes in mean arterial blood pressure (MAP), heart rate, and frequency of breathing (fR). The objective of this study was to determine the role of nitric oxide (NO) in the cardiovascular and ventilatory responses elicited by brief exposures to hypoxia in isoflurane-anesthetized rats. The rats were instrumented to record MAP, heart rate, and fR and then exposed to 9...

متن کامل

The effect of chronic caffeine administration on hyperalgesia in a rat neuropathic pain model: role of nitric oxide pathway

Background: Neuropathic pain is a chronic pain caused by damage to the central nervous system and the peripheral. Caffeine is a non-selective antagonist of A1, A2a, receptors of adenosine, which has a protective effect on neuropathic pain in some doses by inhibiting A2a, A2b receptors. Considering that the nitric oxide (NO) levels are apparently effective in the parts of caffeine central effect...

متن کامل

Brain stem NO modulates ventilatory acclimatization to hypoxia in mice.

The objective of our study was to assess the role of neuronal nitric oxide synthase (nNOS) in the ventilatory acclimatization to hypoxia. We measured the ventilation in acclimatized Bl6/CBA mice breathing 21% and 8% oxygen, used a nNOS inhibitor, and assessed the expression of N-methyl-d-aspartate (NMDA) glutamate receptor and nNOS (mRNA and protein). Two groups of Bl6/CBA mice (n = 60) were ex...

متن کامل

Epidermal Sensing of Oxygen Is Essential for Systemic Hypoxic Response

Skin plays an essential role, mediated in part by its remarkable vascular plasticity, in adaptation to environmental stimuli. Certain vertebrates, such as amphibians, respond to hypoxia in part through the skin; but it is unknown whether this tissue can influence mammalian systemic adaptation to low oxygen levels. We have found that epidermal deletion of the hypoxia-responsive transcription fac...

متن کامل

Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link.

Intermittent hypoxia, a feature of obstructive sleep apnoea, potentiates ventilatory hypoxic responses, alters heart rate variability and produces hypertension, partially owing to an enhanced carotid body responsiveness to hypoxia. Since oxidative stress is a potential mediator of both chemosensory and cardiorespiratory alterations, we hypothesised that an antioxidant treatment may prevent thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014